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OLS

R2
OLS ; A Coefficient of Determination for OLS

Consider a linear model ;

yn×1 = Xn×(p+1)β(p+1)×1 + εn×1 , ε ∼ Nn(0, σ2In)

Then we have

SSE =

n∑
i=1

(yi − ŷi)2, SST =

n∑
i=1

(yi − ȳi)2

R2
OLS

def
= 1− SSE

SST
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OLS

1 R2
OLS measures the goodness of fit

2 However, for GLMs?

3 Some GLMs with well-defined likelihood
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Specified Likelihood

l(y, µ(X)) ; The log-likelihood of model E(y|X) = µ(X) for
observed data (y,X)

l(y, µ(1n)) ; The log-likelihood of model E(y) = µ(1n) = µ1n

Magee(1990) ; realtionship between R2 and the likelihood ratio
statistics in the linear regression models

R2
LR = 1− exp

{
2

n
l(y, µ̂(1n))− 2

n
l(y, µ̂(X))

}
where µ̂’s are obtained by MLE for corresponding model.
For proof, refer to "R2 Measures based on Wald and Likelihood
Ratio Joint Significance Tests, Magee, L. ,1990"
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Specified Likelihood

For a logistic regression, perfectly fitted values result in
l(y, µ̂(X)) = 0. That is, samples can be perfectly separated by
a linear function.

max(R2
LR) = 1− exp

{
2

n
l(y, µ̂(1n))

}
For example, with balanced case-control data
(Bernoulli-distributed with π = 0.5), max(R2

LR) = 0.75.
That is, R2

LR is bounded from above by l(y, µ̂(1n)) and will
never attain value 1.
This is incosistent with the existing concept of R2.
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Specified Likelihood

Nagelkerke(1991) ; Suggested the corrected one.

R2
N

def
=

R2
LR

1− exp
{

2
n l(y, µ̂(1n))

} =
R2
LR

max(R2
LR)
∈ [0, 1]

But still inconsistent with the classical definition of cofficient of
determination.

Cameron and Windmeijer(1997) ; Use the KL divergence to
quantify the uncertainty remaining in the response after
accounting for predictors.
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Specified Likelihood

θ̂X
def
= argmax

θ
L(θ|X) ; MLE given data X.

θ̂In
def
= argmax

θ
L(θ|In) ; MLE under saturated model.

Saturated model example ; E(Y ) = βn×1

K̂L(θ,X)
def
= 2{l(θ̂In |In)− l(θ̂X |X)}

R2
KL

def
= 1− K̂L(θ,X)

K̂L(θ,1n)

Can be interpreted as the deviance reduction ratio due to
the changes of predictors in X.
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Limits

All the aforementioned generalized coefficients of determination
are given through completely specified likelihood function.

However, these are not applicable for more general GLMs like
quasi-models which specify only the mean and variance
functions.

8 / 42



OLS Specified Likelihood Limits GLM review Measurement Proposal Empirical Studies Real Data End

GLM review

Random Component

1 Assume (yi|Xi)
iid∼ a member of exponential family

2 Model µi = E(yi|Xi)

3 Link function g ; g(µi) = Xiβ where Xi is an ithrow of data
matrix.
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Exponential family

Any random variable y in the exponential family has a
probability density function of the form,

f(y, θ, φ) = exp

{
yθ − b(θ)

φ
− c(y, φ)

}
with loglikelihood,

`(θ, y, φ) = log{f(y, θ, φ)} =
yθ − b(θ)

φ
− c(y, φ)

θ ; The canonical parameter of interest
φ : A dispersion parameter which plays a role in the variance
We use the Bartlett’s Identities to derive a general expression
for the variance function.
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Bartlett’s Identities

The first and second Bartlett results ensures that under suitable
conditions (see Leibniz integral rule), for a density function
dependent on θ, fθ(·),

Eθ

[
∂

∂θ
log(fθ(y))

]
= 0

V arθ

[
∂

∂θ
log(fθ(y))

]
+ Eθ

[
∂2

∂θ2
log(fθ(y))

]
= 0
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Bartlett’s Identities

Expected value of Y : Taking the first derivative with respect
to θ of the log of the density in the exponential family form
described above, we have

∂

∂θ
log(f(y, θ, φ)) =

∂

∂θ

[
yθ − b(θ)

φ
− c(y, φ)

]
=
y − b′(θ)

φ

. Then taking the expected value and setting it equal to zero
leads to,

Eθ

[
y − b′(θ)

φ

]
=

Eθ[y]− b′(θ)
φ

= 0

Eθ[y] = b′(θ)

12 / 42



OLS Specified Likelihood Limits GLM review Measurement Proposal Empirical Studies Real Data End

Bartlett’s Identities

Variance of Y: To compute the variance we use the second
Bartlett identity,

Varθ

[
∂

∂θ

(
yθ − b(θ)

φ
− c(y, φ)

)]
+ Eθ

[
∂2

∂θ2

(
yθ − b(θ)

φ
− c(y, φ)

)]
is 0. Then,

Varθ

[
y − b′(θ)

φ

]
+ Eθ

[
−b′′(θ)
φ

]
= 0, Varθ [y] = b′′(θ)φ

13 / 42



OLS Specified Likelihood Limits GLM review Measurement Proposal Empirical Studies Real Data End

Bartlett’s Identities

We have now a relationship between µ and θ, namely
µ = b′(θ) and θ = b′−1(µ), which allows for a relationship
between µ and the variance,

V (θ) = b′′(θ) = the part of the variance that depends on θ

V(µ) = b′′(b′−1(µ))

or,
V (µ) = (b′′ ◦ b′−1)(µ)
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Variance Function - Bernoulli case

For example, let y ∼ Bernoulli(p) then we express the density
of the Bernoulli distribution in exponential family form,

f(y) = exp

(
y ln

p

1− p
+ ln(1− p)

)
θ = ln

p

1− p
=logit(p),

which gives us p =
eθ

1 + eθ
, b(θ) = ln(1 + eθ) and

b′(θ) =
eθ

1 + eθ
= p = µ , b′′(θ) =

eθ

1 + eθ
−
(

eθ

1 + eθ

)2
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Variance Function - Bernoulli case

This give us
V (µ) = µ(1− µ) = µ− µ2.

In this case, dispersion parameter φ = 1.
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Measuring Variation Changes
Along the Variance Function

φ ; dispersion parameter
V ( · ) ; known variance function in GLMs
Consider a simpler measure of uncertainty, var, the variation.

var(yi|Xi)
def
= φV {µ(Xi)} = φb′′{b′−1(µ(Xi))}

where µ(Xi)
def
= E(yi|Xi). While the variance function describes

the effect of the mean on the variation of the response variable
besides the dispersion parameter, Jorgensen(1987) showed that
the variance function V ( · ) indeed characterizes the underlying
exponential distributions.
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Measuring Variation Changes
Along the Variance Function

For a response variable with its mean changing from a to b, its
variation moves accordingly along the variance function from
φV (a) to φV (b).
Therefore, the variation change of the response variable should
be measured using, instead of (a− b)2,

dV (a, b) =

[∫ b

a

√
1 + {V ′(t)}2dt

]2
which is an squared length of V (·) between V (a) and V (b).
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Variation change along the variance function
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Variation change along the variance function
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Variation change along the variance function
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Variation

dV (a, b) can differ dramatically from the Euclidean distance
(a− b)2 when the underlying variance function is nonlinear.

As shown by Morris (1982, 1983), many popularly considered
exponential family distributions, such as binomial, negative
binomial, and gamma distributions, have quadratic variance
functions. We assume a general case ;

V (µ) = v2µ
2 + v1µ+ v0 , v2 6= 0
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Variation

∫ b

a

√
1 + V ′(t)2dt =

∫ b

a

√
1 + (2v2t+ v1)2dt

=
V ′(t)

√
1 + V ′(t)2 + sinh−1(V ′(t))

4v2

∣∣∣b
a

=
√
dV (a, b)

When v2 = 0, that is, the variance function is linear or constant
as in the case of Poisson distribution or normal distribution, we
have dV (a, b) = (1 + v21)(b− a)2.
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R2
V

The total variation in Y ;
∑n

i=1 dV {yi, µ̂i(1n)}
The model with predictors X reduces the unexplained variation
in Y to

∑n
i=1 dV {yi, µ̂i(X)}. Therefore, we define the coefficient

of determination as

R2
V = 1−

∑n
i=1 dV {yi, µ̂i(X)}∑n
i=1 dV {yi, µ̂i(1n)}

.

Appropriate when only mean and variance functions can be
specified(like the quasi-models).
Therefore, µ̂(X) and µ̂(1n) may be derived from
quasi-likelihood estimators, other than MLE.
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Consistency of R2
V and its Extension

V ′(·) is constant for normal and Poisson distributions.
That is, R2

V = R2 for OLS with normal distribution and
log-linear model with Poisson distribtution.

Similar to the coefficient of determination, the coefficient of
partial determination is well-defined for linear models.

Measures the proportion of variation in the response variable
not explained by a set of predictors that can be explained by an
additional set of predictors.

25 / 42



OLS Specified Likelihood Limits GLM review Measurement Proposal Empirical Studies Real Data End

Partial Determination

For example, considering two sets of predictors X1 and X2 in a
linear regression model, we have

R2(X2|X1) = 1− SSE(X1, X2)

SSE(X1)
=
R2(X1, X2)−R2(X1)

1−R2(X1)

(∵) Recall that 1−R2(X1) = SSE(X1)
SST .

measuring the proportion of remaining variation in the response,
when including X1, explained by X2 .
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Partial Determination

With our definition of R2
V , we can easily extend it to a

coefficient of partial determination for more general models.

R2
V (X2|X1) =

R2
V (X1, X2)−R2

V (X1)

1−R2
V (X1)
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Adjusted R2
V

R2
V also suffers to increasing numbers of predictors as the

classical R2.
Therefore, averaged measures of the variation change along the
variance function can be used to take consideration of effects
caused by different numbers of predictors.

R2
V,adj

def
= 1−

∑n
i=1 dV {yi, µ̂i(X)}/(n− p)∑n
i=1 dV {yi, µ̂i(1n)}/(n− 1)

.
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Empirical Comparison

1 Random Sampling for 100 times from 2 Populations
2 from a member of Exponential family f(·) with means
µ1, µ2 respectively

3 50 random samples for each sampling ;
x1,1, · · · , x1,25

iid∼ f( · | µ1), x2,1, · · · , x2,25
iid∼ f( · | µ2)

X1 ; The population of the corresponding observation
X2 ; From the standard normal distribution, independent of X1

and the response variable

I’m gonna draw a sketch for this data structure.
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Binomial Model

Let

µ1 =
e−β

1 + e−β
, µ2 =

eβ

1 + eβ
.

That is, we model the mean µ(X1) = eX1β

1+eX1β
, with X1 = 1 or -1

indicating the two different populations. Here, µ1 + µ2 = 1.

The coefficients of determination are averaged over the 100
datasets for each β ranging from 0 to 5 with step=0.1.
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Binomial Model

When β = 0, we have µ1 = µ2.

Thus corresponding R2
· ’s are supposed to report 0 (or very close

to 0).

On the other hand, µ1 → 0, µ2 → 1 as β →∞. Which leads to
the single-population based samples.
Therefore, it is not surprising to observe that, when including
the true predictor X1, R

2
N , R

2
KL, and R

2
V approach 1.

See Fig.2.
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Candidates

R2
LR = 1− exp

{
2

n
l(y, µ̂(1n))− 2

n
l(y, µ̂(X))

}
R2
N =

R2
LR

max(R2
LR)

R2
KL = 1− K̂L(β,X)

K̂L(β,1n)

R2
V = 1−

∑n
i=1 dV {yi, µ̂i(X)}∑n
i=1 dV {yi, µ̂i(1n)}

.
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Poisson & Gamma Model

Poisson Model ; µ(X1) = eX1β

Gamma Model ; µ(X1) = 100
2+X1β

, shape par.=100

The coefficients of determination are averaged over the 100
datasets for each β ranging from 0 to 5 with step=0.1.

See Fig.3, 4.
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Poisson & Gamma Model

When β →∞, |µ1 − µ2| reaches the maximum in poisson model
but is bounded by 50 in the gamma model.

Therefore, it is not surprising to observe that, when including
the true predictor X1,R2

KL and R2
V approach one in the Poisson

model, but are barely bounded away from one in the gamma
model.
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Why R2
N , R

2
LR falsely claim high R2?

We consider the case β = 5.
Denote X21 as the subset of X2 with E(X1) = µ1 and
X22 as the subset of X2 with E(X1) = µ2.

With the total sample size at 50, we have
X̄21 − X̄22 ∼ N(0, 0.08).
A large value of X̄21 − X̄22 implies falsely correlated X1 and X2

although X1 and X2 are truly independent.
Plot of calculated R2 versus X̄21 − X̄22 in fig.5.
It shows the robustness of different coefficients of determination
when only a falsely correlated X2 is included.
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Why R2
N , R

2
LR falsely claim high R2?

R2
LR and R2

N ; Have tendency to severely overstate the
variation proportion explained by the poisson or
gamma model.
On the other hand, both R2

KL and R2
V are more robust to such

false correlation.
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X1 vs (X1, X2)

R2(X1, X2) is similar to R2(X1)
. Though the former models always have slightly higher values.

We defined R2
V,adj to adjust for increasing numbers of predictors.

Since the K-L divergences used to define R2
KL are indeed

deviances, we can also address the issue of different degrees of
freedom in the deviances by defining an adjusted version of R2

KL

as follows;

R2
KL,adj = 1− K̂L(y, µ̂(X))/(n− p)

K̂L(y,µ̂(1n))/(n− 1)
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X1 vs (X1, X2)

As shown in Figure 6, both R2
V,adj and R

2
KL,adj have lowered

values when irrelevant predictors X2 and X3 are added to the
model, with X3 independently simulated from a standard
normal distribution.
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Real Data Analysis

We illustrate the different definitions of R2 by applying them to
the data from a study of nesting horseshoe crabs included in
Agresti (1996).

(C ; colors), (SC ; spine conditions), (CW ; carapace widths ),
(W ; weights) of 173 female crabs, each with a male crab
attached to her in her nest.
This study intended to investigate whether these factors affect
the number of satellites, that is, any other males riding near a
female crab.
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Real Data Analysis

We consider binomial models ;

y = Whether a female crab had any satellites

and Poisson models ;

y = # of satellites a female crab had

As demonstrated in the previous section, both R2
LR and R2

N

indeed severely overstate the variation proportion explained by
the Poisson models.
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Real Data Analysis

Quasi-binomial models and quasi-Poisson models can be fitted
for the above cases, with R2

V and partial R2
V calculated.

φ̂ = 1.0266 for the binomial full model, and φ̂ = 3.2354 for the
Poisson full model.
Use quasi-Poisson models to allow overdispersion(that is, use of
likelihood-based R2 is inappropriate)!

For Poisson or quasi-Poisson models we have same regression
coefficients. This leads to the same R2

V and partial R2
V .
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Conclusions

R2 ; Measures goodness of fit , also provides a measure of
predictability.
R2 can be used to choose the optimal set of predictors when
the model size, that is, the number of predictors, is fixed.

The adj. versions can be used to compare models including
different numbers of predictors. For this reason, R2

adj can be
also used to help model selection, tuning parameter
selection, etc.
Our extension R2

V,adj makes all these possible when any
statistical model with a well-defined variance function, such as
quasi model.
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